11beta-hydroxysteroid dehydrogenase type 2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation.
نویسندگان
چکیده
Aldosterone stimulates the sympathetic nervous system by binding to a select population of brain mineralocorticoid receptors (MR). These MR have an equal affinity for corticosterone that is present in substantially higher concentrations, but are held in reserve for aldosterone by activity of the enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2), which converts corticosterone to an inactive metabolite. Thus, colocalization of MR and 11beta-HSD-2 activity may help identify brain regions that mediate the effects of aldosterone. The present studies tested the hypothesis that 11beta-HSD-2 activity regulates MR-mediated responses in the paraventricular nucleus (PVN) of the hypothalamus, a forebrain region implicated in sympathetic regulation. Real-time-polymerase chain reaction revealed the presence of 11beta-HSD-2 mRNA in PVN. In anesthetized adult male Sprague-Dawley rats, microinjection of the 11beta-HSD-2 inhibitor carbenoxolone (CBX) into PVN increased mean arterial pressure, heart rate, and renal sympathetic nerve activity. Intracerebroventricular injections of CBX excited PVN neurons and increased mean arterial pressure, heart rate, and renal sympathetic nerve activity. The ability of CBX to increase sympathetic activity by inhibiting 11beta-HSD-2, thereby permitting corticosterone to activate MR, was confirmed by the following: Intracerebroventricular glycyrrhizic acid, another 11beta-HSD-2 inhibitor, mimicked the sympathoexcitatory effects of CBX; the sympathoexcitatory effects of CBX were blocked by spironolactone, a MR antagonist. Neither CBX nor glycyrrhizic acid elicited a response in adrenalectomized rats. These findings suggest that MR in PVN contribute to sympathetic regulation and may be activated by aldosterone or corticosterone (or cortisol in humans) depending on the state of 11beta-HSD-2 activity.
منابع مشابه
Hypothalamic Paraventricular Nucleus Modulates Sympathetic Excitation
Aldosterone stimulates the sympathetic nervous system by binding to a select population of brain mineralocorticoid receptors (MR). These MR have an equal affinity for corticosterone that is present in substantially higher concentrations, but are held in reserve for aldosterone by activity of the enzyme 11 -hydroxysteroid dehydrogenase type 2 (11 -HSD-2), which converts corticosterone to an inac...
متن کاملHypothalamic-Pituitary-Adrenal Axis Abnormalities in Response to Deletion of 11β-HSD1 is Strain-Dependent
Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) has previously been shown to influence HPA axis activity. 129/MF1 mice null for 11beta-HSD1 (129/MF1 HSD1(-/-)) have ...
متن کاملExpression of 11 beta-hydroxysteroid dehydrogenase type 1 in alveolar epithelial cells in rats.
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) behaves predominantly as an oxoreductase converting the receptor-inactive glucocorticoids to their active forms in vivo, while the type 2 isoform (11beta-HSD2) possesses only dehydrogenase activity and inactivates cortisol in human or corticosterone in rat. We determined enzyme activity of 11beta-HSD in rat lungs from fetus to adult, and ...
متن کاملHexose-6-phosphate Dehydrogenase Modulates 11β-Hydroxysteroid Dehydrogenase Type 1-Dependent Metabolism of 7-keto- and 7β-hydroxy-neurosteroids
BACKGROUND The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly ca...
متن کاملAngiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats.
Angiotensin II (Ang II), acting via angiotensin type 1 receptors in the brain, activates the sympathetic nervous system in heart failure (HF). We reported recently that Ang II stimulates mitogen-activated protein kinase (MAPK) to upregulate brain angiotensin type 1 receptors in HF rats. In this study we tested the hypothesis that Ang II-activated MAPK signaling pathways contribute to sympatheti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2006